



# Paper on Scope Industrial Applications of Optimal Scheduling Models

liro Harjunkoski and Ignacio Grossmann

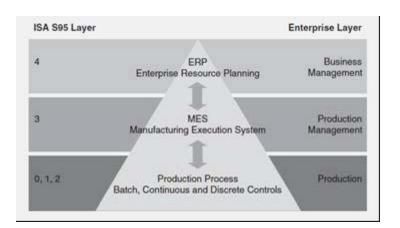


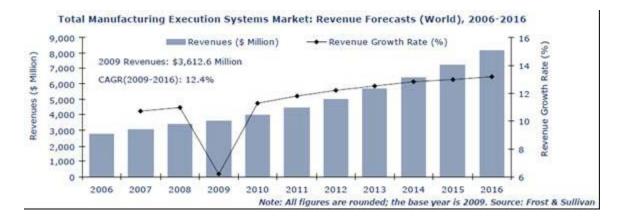




### Scope for Industrial Applications of Optimal Production Scheduling Models

Pedro Castro<sup>1</sup>, Sebastian Engell<sup>2</sup>, Carlos Méndez<sup>3</sup>, Ignacio Grossmann<sup>4</sup>, Iiro Harjunkoski<sup>5</sup>, John Hooker<sup>6</sup>, Christos Maravelias<sup>7</sup>, Guido Sand<sup>5</sup> and John Wassick<sup>8</sup>


<sup>1</sup> Unidade de Modelação e Optimização de Sistemas Energéticos, Laboratório Nacional de Energia e Geologia, 1649-038 Lisboa, Portugal
<sup>2</sup> Department of Chemical Engineering, University of Dortmund, 44221 Dortmund, Germany
<sup>3</sup> INTEC (UNL – CONICET), Güemes 3450, 3000 Santa Fe, Argentina
<sup>4</sup> Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
<sup>5</sup> ABB Corporate Research, Wallstadter Str. 59, 68526 Ladenburg, Germany
<sup>6</sup> Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213, United States
<sup>7</sup> University of Wisconsin, Madison, WI 53706, USA
<sup>8</sup> The Dow Chemical Company, United States

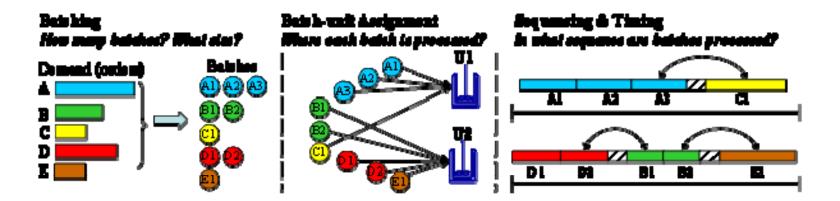

Target: Identify industrial applicability of existing scheduling solutions and provide some ideas or guidelines on how the gap towards industrial applicability can be reduced or even closed



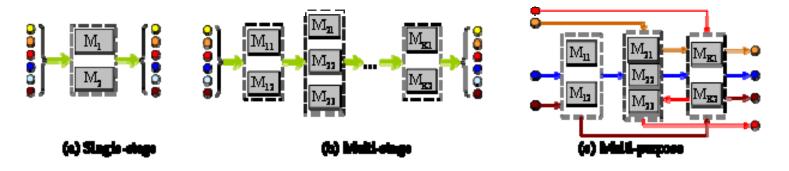


#### 1. Introduction, motivation






## Expected growth of MES systems – partly driven by optimization-based scheduling






#### 2. Major classes of Production Scheduling Problems



- 2.2 Market environment: Make to stock make to order
- 2.3 Planning functions (push vs pull policies)
- 2.4 Production facility





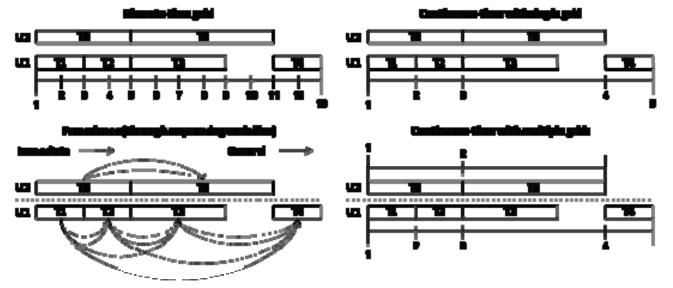


**2.5 Processing features and restrictions** 

#### 2.6 General resource constraints

- 2.7 Set-ups
- 2.8 Material storage and transfer

#### **3. General versus Specific Approaches to Production Scheduling**


Tailored vs generic commercial TSP vs STN, RTN models



#### 4. Major scheduling models



#### 4.1 Linear scheduling models



- 4.1.1 Continuous-time with general precedence sequencing variables
- 4.1.2 Linking the RTN process and mathematical models
- 4.1.3 Discrete Time
- 4.1.4 Continuous-time with single time grid
- 4.1.5 Continuous-time with multiple time grids

4.2 Nonlinear scheduling models Process models (eg blending)



#### 5. Solution Methods



- 5.1 MILP Methods
- **5.2 MINLP Methods**
- 5.3 Math programming enhancements
  - 5.3.1 Problem representations and modeling methods
  - **5.3.2 Valid inequalities and extended formulations**
  - 5.3.3 Branch-and-bound algorithm
  - **5.3.4 Decomposition algorithms**
- **5.4 Constraint Programming**
- **5.5 Heuristic and Metaheuristic Methods** 
  - 5.5.1 Rule-based scheduling
  - 5.5.2 Decomposition-based approaches
  - 5.5.3 Meta-heuristics
  - 5.5.4 Heuristics-guided exhaustive search by reachability analysis of timed automata





#### **5.7 Methods for Uncertainty**

#### 5.8 Overview Modeling Systems (GAMS, AIMMS, AMPL)

#### 6. Comparison, deployability

- 6.1 Deployment aspects
- 6.2 Academic Research
- 6.3 Industrial Most Successful Applications
- 6.4 Arising industrial problems

#### 6.5 Lessons learned from successful industrial implementations

- 6.5.1 Role of the production scheduler
- 6.5.2 Information available to the production scheduler
- 6.5.3 Day-to-day production scheduling
- 6.5.4 The business opportunity in improved scheduling
- 6.5.5 Elements of successful implementation
- 6.5.6 Summary





7. Critical Review - Challenges

8. Conclusions and future directions

Appendix A. Primer on Solution Methods Appendix B. Basic Formulations

Any comments or suggestions?